

Impacts of cost-reflective pricing on the economics of battery storage

David Blowers
1 June 2016

Solar PV and batteries as a disruptive technology?

- Traditionally, all consumers, with the exception of those in some remote areas, have relied on centralised generation and the grid
- Generous subsidies have driven very high adoption of solar PV, as more and more urban households have some form of distributed generation
- Emergence of battery technology provides the opportunity for consumers to leave the grid altogether
- The death spiral and the end of the grid?

Demand tariffs will make solar PV less attractive

Solar PV in the money now

But a lot further away under demand tariffs

Benefits Costs

But it won't be long before solar PV is back in the money

The cost of solar PV will fall even further

- Under existing flat-rate tariffs, consumers with solar PV batteries will save the unit cost of electricity (c/kwh) minus the feed-in tariff
- If more of the electricity costs are recovered through higher pricing during peak periods, consumers who can reduce consumption from the grid at peak times can save
- Options are:
 - Time-of-use (or flexible pricing)
 - Demand tariffs
 - Critical-peak pricing.
- Savings equate to peak period saving + unit cost of electricity feed-in tariff

Battery technology will change the way we use electricity

Solar PV is limited in reducing peak consumption

Batteries are not

More savings with demand tariffs than volumetric tariffs

- A household with a three-kilowatt solar PV system already installed will save an additional \$300 to \$400 a year on their electricity bill if they install a seven-kilowatt-hour battery under a demand tariff
- This is about \$100 more a year than the same household would save under the current tariff structure
- Battery life can be as much as doubled if used under a demand tariff than under a volumetric tariff
- Under a demand tariff, the decision to install a seven-kilowatt hour battery without solar becomes economically feasible at an installed price of \$2300 in all cities apart from Sydney and Melbourne.

Demand tariffs will benefit the adoption of battery storage

... but the level of incentive will rely heavily on the structure of the tariff

- Much will depend on where networks/retailers choose to place the residual the price paid for existing infrastructure
- The higher the cost of the time-specific component of the tariff, the greater the incentive to adopt battery storage. Either:
 - peak period;
 - critical peak period; or
 - demand tariff.
- The higher the fixed component, the lower the incentive for battery storage (and solar PV)
- But a high fixed component could be perceived as increasing the incentive to leave the grid

But going off-grid is unlikely for most urban households

The price you pay will depend on the reliability you want

There will be challenges for the electricity sector

- Death spiral unlikely, but batteries with cost-reflective pricing can have consequences for generation and networks
- Lower peak prices for all generation may question the economic viability of some generators
- High cost of future network investment could be reduced or avoided
- But falling demand could also impact network businesses revenue recovery
- There may still need to be asset write-downs and policy makers must face the question of who will pay for the parts of the grid that are not needed.

Impacts of cost-reflective pricing on the economics of battery storage

David Blowers
1 June 2016